0

Full Content is available to subscribers

Subscribe/Learn More  >

Aerodynamic Design of a Highly Loaded Axial Flow Fan Rotor Using a Novel One-Dimensional Design Method With its Numerical Simulation

[+] Author Affiliations
Ali Shahsavari, Mahdi Nili-Ahamadabadi

Isfahan University of Technology, Isfahan, Iran

Paper No. GT2016-57333, pp. V02AT37A036; 13 pages
doi:10.1115/GT2016-57333
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 2A: Turbomachinery
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4969-9
  • Copyright © 2016 by ASME

abstract

This paper presents a novel one-dimensional design method based on the radial equilibrium theory and constant span-wise diffusion factor to redesign of NASA rotor 67 just aerodynamically with a higher pressure ratio at the same design point. A one-dimensional design code is developed to obtain the meridional plane and blade to blade geometry of rotor to reach the three-dimensional view of rotor blades. To verify the redesigned rotor, its flow numerical simulation is carried out to compute its performance curve. The experimental performance curve of NASA rotor 67 is used for validation of the numerical results. Structured mesh with finer grids near walls is used to capture flow field and boundary layer effects. RANS equations are solved by finite volume method for rotating zones and stationary zones. The numerical results of the new rotor show about 9% increase in its pressure ratio at both design and off design mass flow rate. The new rotor has a higher outlet velocity through its upper span improving bypass ratio of a turbofan engine. To prove the new fan ability of producing more bypass ratio, a thermodynamic analysis is conducted. The results of this analysis show 13% increase in bypass ratio and 5.7% decline in specific fuel consumption in comparison to NASA rotor 67.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In