Full Content is available to subscribers

Subscribe/Learn More  >

Modeling for Tip Clearance Effects on Stall-Onset Condition in Transonic Axial Compressors

[+] Author Affiliations
Shubo Ye, Guang Xi

Xi’an Jiaotong University, Xi’an, China

Qingjun Zhao, Xiaorong Xiang, Jianzhong Xu

Chinese Academy of Sciences, Beijing, China

Paper No. GT2016-57081, pp. V02AT37A032; 12 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 2A: Turbomachinery
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4969-9
  • Copyright © 2016 by ASME


Rotating stall is a primary limit to compressor performance, and the reasonable estimation of stall-onset point is very useful in compressor design. Extensive investigations have been conducted in the past few decades to develop analytical models and numerical methods for stall-onset prediction, and much progress has been made in the understanding of flow mechanism for rotating stall. In spite of the robust prediction ability of stall-onset condition, the unsteady 3-D computations are still time-consuming for industrial applications. Analytical models are able to provide a fast estimation of compressor stall onset. However, empirical correlations are usually needed in the analytical models, which leads to a decrement in the accuracy and application scope of the models. Especially for high speed compressors, tip clearance effects hasn’t been evaluated reasonably in the previous analytical models, which actually plays a very important role in determining the stall-onset point. Therefore, new analytical models accounting for tip clearance effects will be promising in estimating the stall-onset more precisely. It’s the requirement for a new analytical model that motivates the present work.

In the present work, the unsteady flow simulation of a transonic compressor rotor at near stall condition was performed to clarify the relations between tip clearance flow oscillations and compressor stall-onset in transonic axial compressor rotors. The interaction between tip clearance and incoming flow is simplified to a 2-D analogy of free-stream and counter-flow wall jet interaction. Momentum balance analysis is applied to identify the position of tip clearance/incoming flow interface, together with a prediction method of tip leakage vortex core trajectory. The effects of the in-passage shock on tip clearance/incoming flow interaction is taken into account by applying an upstream deflection of the interface, and this deflection is also observed in the computational flow field at near stall conditions. As a combination of the above-mentioned aspects, a model is proposed to define the critical point for tip clearance flow spillage from blade leading edge, which corresponds to the stall-onset point on compressor performance curves. Validations against numerical results prove that the model is capable of including tip clearance effects on stall-onset point. Parametric study of the model shows that blade tip offloads with increasing tip clearance, reducing the inverse momentum flux of tip clearance flow. As a result, the stalling flow coefficient appears to be less sensitive to tip clearance variation, which accords with the published experimental results.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In