0

Full Content is available to subscribers

Subscribe/Learn More  >

Visualizations of Flow Structures in the Rotor Passage of an Axial Compressor at the Onset of Stall

[+] Author Affiliations
Huang Chen, Yuanchao Li, David Tan, Joseph Katz

Johns Hopkins University, Baltimore, MD

Paper No. GT2016-57054, pp. V02AT37A031; 16 pages
doi:10.1115/GT2016-57054
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 2A: Turbomachinery
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4969-9
  • Copyright © 2016 by ASME

abstract

Flow visualizations and stereoscopic PIV (SPIV) measurements are carried out to study the flow phenomena developing in the rotor passage of an axial compressor at the onset of stall. Experiments have been performed in the JHU optically index-matched facility, using acrylic blades and liquid that have the same optical refractive index. The blade geometries are based on the first one and a half stages of the Low Speed Axial Compressor (LSAC) facility at NASA Glenn. The SPIV measurements provide detailed snapshots and ensemble statistics on the flow in a series of meridional planes. Data recorded in closely spaced planes enable us to obtain ensemble averaged 3D vorticity distributions. High speed imaging of cavitation, performed at low pressure, is used to qualitatively visualize the vortical structures within the rotor passage. The observations are performed just above and at stall conditions. At pre-stall condition, shortly after it rolled up, the tip leakage vortex (TLV) breaks up into widely distributed intermittent vortical structures. In particular, interaction of the backward tip leakage flow with the nearly opposite direction main passage flow under (radially inward) it results in periodic generation of large scale vortices that extend upstream, from the suction side (SS) of one blade to the pressure side (PS) or even near the leading edge of the next blade. When these structures penetrate to the next passage, they trigger formation of a similar phenomenon there, initiating a process that sustains itself. Once they form, these vortices rotate with the blade, indicating little through flow in the tip region. The 3D velocity and vorticity distributions confirm the presence of these large flow structures at the transition between the high circumferential velocity region below the TLV center and the main flow deeper in the passage. Further reduction in flow rate into the stall range caused a rapid increase in the number and scale of these vortices, demonstrating that their formation and proliferation plays a key role in the onset of stall.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In