0

Full Content is available to subscribers

Subscribe/Learn More  >

Active Flow Control on a Highly Loaded Compressor Stator Cascade With Synthetic Jets

[+] Author Affiliations
Yong Qin, Ruoyu Wang, Yanping Song, Fu Chen, Huaping Liu

Harbin Institute of Technology, Harbin, China

Paper No. GT2016-56830, pp. V02AT37A023; 13 pages
doi:10.1115/GT2016-56830
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 2A: Turbomachinery
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4969-9
  • Copyright © 2016 by ASME

abstract

Numerical investigations on the control effects of synthetic jets are conducted upon a highly loaded compressor stator cascade. The influence of forcing parameters including actuation frequency, jet amplitude and slot location are analyzed in detail with the single-slit synthetic jet. Besides, a new slot arrangement is put forward for the purpose of effectively controlling flow separation.

Simulation results validate the remarkable effectiveness of the single-slit synthetic jet on controlling flow separation. Owing to the coupling effect between the jet and the main flow, the actuation appears to be most efficient under the characteristic frequency of the main flow passing through the airfoil. Additionally, with the increase of jet momentum coefficient, the control effect is enhanced at first and then decreased, depending on the two aspects: the improvements of aerodynamic performance by momentum injection and the additional flow losses caused by the jet. Compared to other actuator configurations, the segment synthetic jet with three sections can more effectively deflect the end-wall cross flow and thus impede the development of corner vortex, which helps to restrain the accumulation of low momentum fluid towards the corner, emphasizing the importance of slot arrangement. Accordingly, under the optimum condition, the total pressure loss coefficient gains a 15.8% reductions and the static pressure rise coefficient is increased by 5.01%.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In