0

Full Content is available to subscribers

Subscribe/Learn More  >

The Effects on Stability, Performance, and Tip Leakage Flow of Recirculating Casing Treatment in a Subsonic Axial Flow Compressor

[+] Author Affiliations
Wei Wang, Wuli Chu, Haoguang Zhang, Yanhui Wu

Northwestern Polytechnical University, Xi’an, China

Paper No. GT2016-56756, pp. V02AT37A020; 12 pages
doi:10.1115/GT2016-56756
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 2A: Turbomachinery
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4969-9
  • Copyright © 2016 by ASME

abstract

Recirculating casing treatment (RCT) was studied in a subsonic axial flow compressor experimentally and numerically. The RCT was parameterized with the injector throat height and circumferential coverage percentage (ccp) to investigate its influence on compressor stability and on the overall performance in the experimentation. The injector throat height varied from 2 to 6 times the height of the rotor tip clearance, and the ccp ranged from 8.3% to 25% of the casing perimeter. Various RCT configurations were achieved with a modular design procedure. The rotor casing was instrumented with fast-response pressure transducers to detect the stall inception, rotational speed of stall cells, and pressure flow fields. Whole-passage unsteady simulations were also implemented for the RCT and solid casing to understand the flow details. Results indicate that both the compressor stability and overall performance can be improved through RCT with appropriate geometrical parameters. The effect of injector throat height on the stability depends on the choice of ccp, i.e., interaction effect exists. In general, the RCT with a moderate injector throat height and a large circumferential coverage is the optimal choice. Phase-locked pattern of the casing wall pressure reveals a weakened tip leakage vortex under the effect of RCT compared with the solid casing. The numerical results show that the RCT has a substantial effect on tip blockage even when the blade passages break away from the domain of RCT. The reduction of tip blockage induced by the tip leakage vortex is the main reason for the extension of stable operation range. The unsteadiness of double-leakage flow is detected both in the experiment and in numerical simulations. The pressure fluctuations caused by double-leakage flow are depressed with RCT. This observation indicates reduced losses related with the double-leakage flow. Although the stall inception is not changed by implementing RCT, the stall pattern is altered. The stall with two cells is detected in RCT compared with the solid casing with only one stall cell.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In