Full Content is available to subscribers

Subscribe/Learn More  >

Application of Humpback Whale Flippers in an Annular Compressor Cascade

[+] Author Affiliations
Tan Zheng, Xiaoqing Qiang, Jinfang Teng, Jinzhang Feng

Shanghai Jiao Tong University, Shanghai, China

Paper No. GT2016-56589, pp. V02AT37A016; 9 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 2A: Turbomachinery
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4969-9
  • Copyright © 2016 by ASME


Humpback whales possess bumpy tubercles on the leading edge of their flippers. Due to these leading edge tubercles, the whales are able to perform complex underwater maneuvers agilely. Inspired by the flippers, this paper applies sinusoidal-like tubercles to the leading edge of the blade in an annular compressor cascade, and presents a numerical investigation to explore the effects of tubercles with the aim of controlling the corner separation and reducing losses.

A preliminary study by steady 3D RANS simulations is performed. The aerodynamic performance and the behavior of the corner separation are investigated in the baseline compressor cascade. Subsequently, cascades with leading edge tubercles are numerically simulated. A crucial geometry parameter of the tubercles, wavelength, is varied to obtain different configurations. The influence of the parameter is concluded from the comparison of the performance attained by these configurations. Also, several configurations, which are typical in loss characteristics, are selected for further DES simulations so as to obtain more flow details, especially at the separation region. Flow visualizations show that leading edge tubercles could induce the formation of counter-rotating streamwise vortices. The interaction between the streamwise vortices and corner separation is emphatically investigated. By analysis of all the results obtained, this paper tries to figure out the mechanism of leading edge tubercles in loss reduction and separation delay in an annular compressor cascade.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In