0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation of Entropy Generation Distributions in a Transonic Compressor

[+] Author Affiliations
Xi Nan, Le Liu, Ning Ma, Qian Lu, Feng Lin

Chinese Academy of Sciences, Beijing, China

Paper No. GT2016-56519, pp. V02AT37A013; 11 pages
doi:10.1115/GT2016-56519
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 2A: Turbomachinery
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4969-9
  • Copyright © 2016 by ASME

abstract

Highly irreversible flows can arise from the rotor tip region which cause compressor performance degradation. The understanding of the flow irreversibility and the spatial distribution in the rotor passage may provide hints to retrofit rotor geometries as well as design efficiency-friendly casing treatments. This paper presents a numerical investigation on the spatial distributions of entropy generation through a control volume analysis on a transonic compressor. The typical loss sources can be classified as the viscous shear on solid boundaries, the shockwaves at the leading edge and within the passage, the tip leakage vortex and the turbulence mixing in the rotor wake in the tip region, however, it is hard to distinguish their individual contributions because they always interact with each other. To avoid this difficulty, this paper targets at the spatial distribution of entropy generation since it can tell the local losses quantitatively as the results of local flow structures and their interactions. Tip clearance is used as a controlled parameter for the investigation. By varying the tip clearance over the blade chord, the tip leakage flow is energized and thus examined first, followed by the other changes of inflow structures reacting to the tip clearance variation. The changes in entropy generation distributions are then carefully compared. Based on the results, the dominative contributor on entropy generation and its impact on total loss are identified. Finally, new casing designs with stepped tip gaps that may ameliorate the entropy generation of the tip region are discussed and numerically validated.

Copyright © 2016 by ASME
Topics: Compressors , Entropy

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In