Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Tip Clearance on the Performance and Matching of Multistage Axial Compressors

[+] Author Affiliations
Xinqian Zheng, Heli Yang

Tsinghua University, Beijing, China

Paper No. GT2016-56232, pp. V02AT37A008; 12 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 2A: Turbomachinery
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4969-9
  • Copyright © 2016 by ASME


Tip clearance has great influence on the performance of multistage axial compressors including efficiency, pressure rise, mass flow, as well as matching. This paper reports a study into the influence of tip clearance on the performance and matching of a 5-stage axial compressor by a numerical method. Different tip clearances from 0% to 5.0% span which represents the typical range of tip clearance in modern multistage axial compressors were simulated and analyzed. The results show that as tip clearance increases from 0% to 5.0% span, the choked mass flow decreases by about 21.8%, the peak pressure ratio decreases by about 43.1% and the peak efficiency decreases about 14.3 percents. As tip clearance increases, the efficiency of the whole compressor decreases in a parabolic manner not linearly as previous suggested, which is partially attributable to the cantilevered stators considered in this paper and primarily due to the mismatching of different stages. It is of great importance to control the tip clearance. When tip clearance increases, the front stage tends to work near surge condition and the rear stage tends to work near choke condition, which leads to lower efficiency than in the middle stages. A weight was defined to evaluate each stage’s contribution to the whole compressor’s efficiency deficit caused by the increase of tip clearance. Front and rear stages contribute more to the efficiency deficit than the middle stages, which indicates that more attention should be paid on front and rear stages to improve the performance of multistage axial compressors. In order to evaluate the matching of multistage axial compressors with a quantified method, a new parameter named “Peak Efficiency Deviation (PED)” was defined based on the difference between each stage’s operating efficiency and its peak efficiency. The mass flow of multistage axial compressors should be well considered to make the PED parameter to be close to zero as possible. In the most commonly used range of tip clearance from 0.5% to 3.0% span, the PED varies little within 0.4 percent, which is only about 8.4% of the peak efficiency deficit at 1.5% span tip clearance. So, the PED could be small within a wide range of tip clearances if the matching of the compressor is perfect at design tip clearance.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In