0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of Engine Distortion Interaction

[+] Author Affiliations
Fabian Wartzek, Heinz-Peter Schiffer

Technische Universität Darmstadt, Darmstadt, Germany

Jakob P. Haug, Reinhard Niehuis, Martin Bitter, Christian J. Kähler

Universität der Bundeswehr München, Neubiberg, Germany

Paper No. GT2016-56208, pp. V02AT37A007; 13 pages
doi:10.1115/GT2016-56208
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 2A: Turbomachinery
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4969-9
  • Copyright © 2016 by ASME

abstract

Inflow distortions in the compression system of a jet engine are becoming increasingly important for research focus. The investigation of the emergence of a distortion, its interaction with the rotor and the resulting impact on the rotor flow is challenging. In this work a separation in the inflow of a transonic compressor was created and the impact on stage aerodynamics investigated. The separation resulted in a total pressure distortion close to the casing within a sector of 120°. Effects were studied both numerically and experimentally in a joint collaboration project. The numerical model consisted of the full rotor-stator compressor stage, the inlet duct and the distortion generator upstream of the stage. This enables both an accurate validation of the numerical results and contributes to a deeper understanding of the flow. The results of both the numerical and experimental studies were in good agreement. The rotor is locally throttled by the inlet separation, resulting in the formation of an additional loss core at the stability limit due to a local aerodynamic overload. Considering classic distortion descriptors like the DC60, it is shown that they are not able to adequately assess the impact of a strong, but small distortion close to the tip of the rotor. The data can be considered as test case for future numerical models as well as for the validation of new analytical models. Furthermore, the results of this study reveal effects in both experimental and numerical studies that would not be realized if only a model of the separation was analyzed.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In