Full Content is available to subscribers

Subscribe/Learn More  >

Design of Experiments and Numerical Simulation of Deteriorated High Pressure Compressor Airfoils

[+] Author Affiliations
Gerald Reitz, Stephan Schlange, Jens Friedrichs

Technische Universität Braunschweig, Braunschweig, Germany

Paper No. GT2016-56024, pp. V02AT37A002; 13 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 2A: Turbomachinery
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4969-9
  • Copyright © 2016 by ASME


During the operation of a jet engine, deterioration occurs. This constantly affects the engine performance parameters like exhaust gas temperature (EGT) and thrust specific fuel consumption (TSFC). If the EGT reaches a given limit, the engine has to be overhauled during a shop visit at a MRO company (Maintenance, Repair and Overhaul). Using the example of the high pressure compressor (HPC), the airfoils get analyzed for a few geometric properties and classified as serviceable, repairable and non-repairable. The repairable airfoils go through a repair process without in detail considering the actual geometry. To improve the repair process, tailored maintenance actions are desirable. For this purpose, the aerodynamic properties of the airfoil shall be the key factor for defining the repair actions. Therefore, geometric properties with high influence on the aerodynamic performance have to be known to reduce the amount of measuring time.

This paper will present a Design of Experiments (DoE) for HPC-airfoil geometry variations. Therefore, 550 different stage setups will be generated, simulated and analyzed. The database will be imported to a Kriging Method to generate a meta-model. Afterwards, the impact of the different geometric properties on the aerodynamic performance, like pressure-, work- and loss coefficients, will be analyzed by using the meta-model. The most important parameters will be determined and their impact on the flow will be explained.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In