Full Content is available to subscribers

Subscribe/Learn More  >

Preliminary Design and Performance of Counter Rotating Turbines for Open Rotors: Part I — 1-D Methodology

[+] Author Affiliations
Pablo Bellocq

TOTAL S.A., Pau Cedex, France

Inaki Garmendia

University of the Basque Country, San Sebastian, Spain

Jordane Legrand

SOLAR Turbines, Gosselies, Belgium

Vishal Sethi

Cranfield University, Cranfield, UK

Paper No. GT2016-57918, pp. V001T01A037; 11 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 1: Aircraft Engine; Fans and Blowers; Marine
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4968-2
  • Copyright © 2016 by ASME


Direct Drive Open Rotors (DDORs) have the potential to significantly reduce fuel consumption and emissions relative to conventional turbofans. However, this engine architecture presents many design and operational challenges both at engine and aircraft level. At preliminary design stages, a broad design space exploration is required to identify potential optimum design regions and to understand the main trade offs of this novel engine architecture. These assessments may also aid the development process when compromises need to be performed as a consequence of design, operational or regulatory constraints.

Design space exploration assessments are done with 0-D or 1-D models for computational purposes. These simplified 0-D and 1-D models have to capture the impact of the independent variation of the main design and control variables of the engine. Historically, it appears that for preliminary design studies of DDORS, Counter Rotating Turbines (CRTs) have been modeled as conventional turbines and therefore it was not possible to assess the impact of the variation of the number of stages (Nb) and rotational speed of the propellers. Additionally, no preliminary design methodology for CRTs was found in the public domain.

Part I of this two-part publication proposes a 1-D preliminary design methodology for DDOR CRTs. It allows an independent definition of the Nb, rotational speeds of both parts of the CRT, inlet flow conditions, inlet and outlet annulus geometry as well as power extraction. It includes criteria and procedures to calculate: power extraction in each stage, gas path geometry, blade metal angles, flow conditions at each turbine plane and overall CRT efficiency. The feasible torque ratios of a CRT are discussed in this paper. A form factor for the CRT velocity triangles is defined (similar to stage reaction on conventional turbines) and its impact on performance and blade design is discussed. A method for calculating the off-design performance of a CRT is also described in Part I.

In Part II, a 0-D design point (DP) efficiency calculation for CRTs is proposed as well as a case study of a DDOR for a 160 PAX aircraft. In the case study, three main aspects are investigated: A) the design and performance of a 20 stage CRT for the DDOR application; B) the impact of the control of the propellers on cruise specific fuel consumption, C) the impact of the design rotational speeds and Nb of the CRT on its DP efficiency, engine fuel consumption and engine weight.

Copyright © 2016 by ASME
Topics: Design , Rotors , Turbines



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In