0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Wheel-Rail Forces on Mismatched Joints With Ramps

[+] Author Affiliations
Brian Marquis, Robert Greif

US Department of Transportation, Cambridge, MA

Paper No. JRC2016-5734, pp. V001T10A002; 7 pages
doi:10.1115/JRC2016-5734
From:
  • 2016 Joint Rail Conference
  • 2016 Joint Rail Conference
  • Columbia, South Carolina, USA, April 12–15, 2016
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-4967-5

abstract

The discontinuity between rail ends at a joint creates dynamic wheel-rail forces (i.e. high impact forces and wheel unloading) that can result in a range of problems including wear, deterioration, and early failure of the track structure, its components, and passing equipment. The response and magnitude of the dynamic wheel-rail forces generated at joints depend upon the form of the discontinuity (e.g. battered rail ends, ramps, gaps, mismatches, etc.) and the support condition. Joints with battered rail ends, which result from degradation due to repeated impact loading, have been extensively analyzed using closed form expressions developed by Jenkins [1] to estimate P1 and P2 impact forces. While appropriate for analyzing joints with battered rail ends, P1 and P2 forces are not directly applicable to other forms of discontinuity at joints such as mismatches in which the rail ends are offset vertically when installed.

Under certain circumstances, railroads are introducing ramps (by grinding or welding) to reduce the mismatch discontinuity and produce a smoother transition in order to mitigate these dynamic wheel-rail forces. In this paper, analyses are conducted to estimate dynamic wheel-rail forces at joints having ramps and mismatches of various sizes using simplified models along with detailed NUCARS models for comparative purposes. The Federal Railroad Administration (FRA) Track Safety Standards (49 CFR Part213) [2] limit the maximum mismatch at joints by Track Class in order to minimize the impact forces which deteriorate the track structure, its components, and equipment, and may ultimately lead to derailment. Parametric studies are conducted to examine the effects of ramp length, direction of travel, mismatch height, and equipment speed (track class). Plots of primary shock-response-spectrum (maximum impact force on the ramp), residual shock-response-spectrum (maximum impact force after the ramp), and minimum wheel force (i.e. wheel unloading) are developed to provide guidelines on ramp length (H-rule) in order to control the maximum force by track class.

Topics: Rails , Wheels

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In