0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat Generation in the Railroad Bearing Thermoplastic Elastomer Suspension Element

[+] Author Affiliations
Oscar O. Rodriguez, Juan Carbone, Arturo A. Fuentes, Robert E. Jones, Constantine Tarawneh

University of Texas-Rio Grande Valley, Edinburg, TX

Paper No. JRC2016-5823, pp. V001T02A011; 7 pages
doi:10.1115/JRC2016-5823
From:
  • 2016 Joint Rail Conference
  • 2016 Joint Rail Conference
  • Columbia, South Carolina, USA, April 12–15, 2016
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-4967-5
  • Copyright © 2016 by ASME

abstract

The main purpose of this ongoing study is to investigate the effect of heat generation within a railroad thermoplastic elastomer suspension element on the thermal behavior of the railroad bearing assembly. Specifically, the purpose of this project is to quantify the heat generated by cyclic loading of the elastomer suspension element as a function of load amplitude, loading frequency, and operating temperature. The contribution of the elastomer pad to the system energy balance is modeled using data from dynamic mechanical analysis (DMA) of the specific materials in use for that part. DMA is a technique that is commonly used to characterize material properties as a function of temperature, time, frequency, stress, atmosphere or a combination of these parameters. DMA tests were run on samples of pad material prepared by three different processes: injection molded coupons, transfer molded coupons, and parts machined from an actual pad. The results provided a full characterization of the elastic deformation (Energy Storage) and viscous dissipation (Energy Dissipation) behavior of the material as a function of loading frequency, and temperature. These results show that the commonly used thermoplastic elastomer does generate heat under cyclic loading, though the frequency which produces peak heat output is outside the range of common loading frequency in rail service. These results can be combined with a stress analysis and service load measurements to estimate internally generated heat and, thus, enable a refined model for the evolution of bearing temperature during operation.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In