0

Full Content is available to subscribers

Subscribe/Learn More  >

Moisture Effects on Degraded Ballast Shear Strength Behavior

[+] Author Affiliations
Yu Qian, Erol Tutumluer, Youssef M. A. Hashash, Jamshid Ghaboussi

University of Illinois at Urbana-Champaign, Urbana, IL

Debakanta Mishra

Boise State University, Boise, ID

Paper No. JRC2016-5840, pp. V001T01A034; 5 pages
doi:10.1115/JRC2016-5840
From:
  • 2016 Joint Rail Conference
  • 2016 Joint Rail Conference
  • Columbia, South Carolina, USA, April 12–15, 2016
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-4967-5
  • Copyright © 2016 by ASME

abstract

Ballast consisting of large sized aggregate particles with uniform size distribution is an essential component of the track substructure, to facilitate load distribution and drainage. As freight tonnage accumulates with traffic, ballast will accumulate an increasing percentage of fines due to either aggregate breakdown or outside contamination such as subgrade soil intrusion and coal dust collection. According to the classical text by Selig and Waters [1], ballast degradation from traffic involves up to 76% of all fouling cases; voids will be occupied by fines from the bottom of ballast layer gradually causing ballast clogging and losing its drainage ability. When moisture is trapped within ballast, especially fouled ballast, ballast layer stability is compromised. In the recent studies at the University of Illinois, the focus has been to evaluate behavior of fouled ballast due to aggregate degradation using large scale triaxial testing. To investigate the effects of moisture on degraded ballast, fouled ballast was generated in the laboratory through controlled Los Angeles (LA) abrasion tests intended to mimic aggregate abrasion and breakdown and generate fouled ballast at compositions similar to those observed in the field due to repeated train loadings. Triaxial shear strength tests were performed on the fouled ballast at different moisture contents. Important findings of this preliminary study on characterizing wet fouled ballast are presented in this paper. Moisture was found to have a significant effect on the fouled ballast strength behavior. Adding a small amount of 3% moisture (by weight of particles smaller than 3/8 in. size or smaller than 9.5 mm) caused test specimens to indicate approximately 50% decrease in shear strength of the dry fouled ballast. Wet fouled ballast samples peaked at significantly lower maximum deviator stress values at relatively smaller axial strains and remained at these low levels as the axial strain was increased.

Copyright © 2016 by ASME
Topics: Shear strength

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In