0

Full Content is available to subscribers

Subscribe/Learn More  >

Fatigue Analysis of Rail-Head-to-Web Fillet at Bolted Rail Joint Under Various Impact Wheel Load Factors and Support Configurations

[+] Author Affiliations
Kaijun Zhu, J. Riley Edwards, Yu Qian, Bassem O. Andrawes

University of Illinois at Urbana-Champaign, Urbana, IL

Paper No. JRC2016-5802, pp. V001T01A029; 7 pages
doi:10.1115/JRC2016-5802
From:
  • 2016 Joint Rail Conference
  • 2016 Joint Rail Conference
  • Columbia, South Carolina, USA, April 12–15, 2016
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-4967-5
  • Copyright © 2016 by ASME

abstract

As one of the weakest locations in the track superstructure, the rail joint encounters different types of defects and failures, including rail bolt-hole cracking, rail head-web cracking or separation, broken or missing bolts, and joint bar cracking. The defects and failures are mainly initiated by the discontinuities of both geometric and mechanical properties due to the rail joint, and the high impact loads induced by the discontinuities. Continuous welded rail (CWR) overcomes most disadvantages of the rail joints. However, a large number of rail joints still exist in North American Railroads for a variety of reasons, and bolted joints are especially prevalent in early-built rail transit systems. Cracks are often found to initiate in the area of the first bolt-hole and rail-head-to-web fillet (upper fillet) at the rail end among bolted rail joints, which might cause further defects, such as rail breaks or loss of rail running surface. Previous research conducted at the University of Illinois at Urbana-Champaign (UIUC) has established an elastic static Finite Element (FE) model to study the stress distribution of the bolted rail joint with particular emphasis on rail end bolt-hole and upper fillet areas. Based on the stress calculated from the FE models, this paper focuses on the fatigue performance of upper fillet under different impact wheel load factors and crosstie support configurations. Preliminary results show that the estimated fatigue life of rail end upper fillet decreases as impact factor increases, and that a supported joint performs better than a suspended joint on upper fillet fatigue life.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In