Full Content is available to subscribers

Subscribe/Learn More  >

PIV Measurement of Carbon Dioxide Gas-Liquid Two-Phase Nozzle Flow

[+] Author Affiliations
Satoshi Ueno, Wakana Tsuru, Yoichi Kinoue, Norimasa Shiomi, Toshiaki Setoguchi

Saga University, Honjo, Japan

Paper No. AJKFluids2015-20169, pp. V01AT20A002; 7 pages
  • ASME/JSME/KSME 2015 Joint Fluids Engineering Conference
  • Volume 1A: Symposia, Part 2
  • Seoul, South Korea, July 26–31, 2015
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5721-3
  • Copyright © 2015 by JSME


As a refrigerant used for a refrigeration cycle, carbon dioxide (CO2) is regarded. In the case that CO2 is used as a refrigerant, a gas-liquid two-phase flow ejector is very important. The gas-liquid two-phase flow ejector consists of a driving flow nozzle, a suction chamber, a mixing section and a diffuser. It is important for optimally designing the driving flow nozzle of the two-phase flow ejector to make clear the acceleration characteristics of the high speed gas-liquid two-phase flow. However, there is only a few study examples to evaluate the acceleration performance reasonably. Therefore, the purpose of this study is to measure the acceleration characteristics and temperature distribution in the CO2 gas-liquid two-phase flow nozzle of the CO2 two-phase flow ejector by experiment. In the experiment, CO2 is blown down through the convergent-divergent nozzle and is discharged into the atmosphere. Visualization of the nozzle flow has been carried out by Particle Image Velocimetry (PIV). Temperature measurement has been carried out by thermocouples. Obtained velocity distribution of gas-liquid two-phase flow nozzle have been considered as the droplets velocity. By the experiment, these velocity distributions in parts of the nozzle and these temperature distributions in the nozzle are obtained. Therefore, the flow acceleration in the nozzle divergent part is clarified by the experimental work.

Copyright © 2015 by JSME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In