0

Full Content is available to subscribers

Subscribe/Learn More  >

Gravitational Settling of Glass Fibers on an Air Bubble

[+] Author Affiliations
Gregory Lecrivain

Kyoto University, Kyoto, JapanHelmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany

Giacomo Petrucci

Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany

Uwe Hampel

Helmholtz-Zentrum Dresden-Rossendorf, Dresden, GermanyTechnische Universität Dresden, Dresden, Germany

Ryoichi Yamamoto

Kyoto University, Kyoto, Japan

Paper No. AJKFluids2015-16458, pp. V01AT16A004; 6 pages
doi:10.1115/AJKFluids2015-16458
From:
  • ASME/JSME/KSME 2015 Joint Fluids Engineering Conference
  • Volume 1A: Symposia, Part 2
  • Seoul, South Korea, July 26–31, 2015
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5721-3
  • Copyright © 2015 by JSME

abstract

Froth flotation is a separation process in which air bubbles are introduced in a water tank to separate the valuable commodities from the valueless material. Based on their relative affinity to water the valuable particles attach to the bubble surface and are carried to the top of the flotation tank to form the froth layer. The resulting froth layer is eventually collected to produce the concentrate. Froth flotation has been used for more than a century in mining operations to separate valuable materials such as rare earth metals from excavated ores. More recently, froth flotation has been employed for the treatment of contaminated water. In the present study, the effect of the particle elongation on the attachment mechanism is investigated in great detail. Using an in-house optical micro-bubble sensor the attachment of micron glass fibres on the surface of a stationary air bubble immersed in stagnant water is investigated. The attachment mechanism is here defined as three successive events: the approach of the particle near the bubble upstream pole, the collision of the solid particle with the gas-liquid interface and the particle sliding on the gas bubble surface. The translational particle velocities together with the particle orientation during entire attachment process are measured and compared with a theoretical model. For the first time the existence of two types of attachment is shown. Upon collision near the upstream pole of the gas bubble the major axis of the fibre aligns with the local bubble surface. If collision occurs at least 30° further downstream the contact is likely to take a punctual form, i.e. the head of the fibre is in contact with the gas-liquid interface.

Copyright © 2015 by JSME
Topics: Glass fibers , Bubbles

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In