Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of Flatback Airfoil Effect in the Wind Turbine Blade

[+] Author Affiliations
Jae-Ho Jeong

Korea Atomic Energy Research Institute, Daejeon, Korea

Soo-Hyun Kim

Korea Institute of Energy Research, Daejeon, Korea

Paper No. AJKFluids2015-09806, pp. V01AT09A024; 9 pages
  • ASME/JSME/KSME 2015 Joint Fluids Engineering Conference
  • Volume 1A: Symposia, Part 2
  • Seoul, South Korea, July 26–31, 2015
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5732-8
  • Copyright © 2015 by JSME


The flatback airfoil effect in the inboard region of large wind turbine blade has been investigated by numerical analysis. Complicated flow phenomena in the wind turbine blade were captured by Reynolds-averaged Navier-Stokes flow simulation (RANS) with SST (Shear Stress Transport) turbulence model.

The inboard region of the blade without the flatback airfoils is dominated by the separated vortex. The separated vortex starts to be formed near the blade mid-chord. The separated vortex core is generated by the large pressure difference in the blade inboard trailing edge region. The separated vortex grows nearly in the outboard direction, which is so-called secondary flow on the blade surface. The flatback airfoils are designed, and applied to the wind turbine inboard region. The scale of the separated vortex can be decreased, and the blade performance enhanced up to nearly 6% in the flatback airfoil region. However, the blade with large wake thickness due to the flatback airfoil has a negative impact on the aerodynamic noise.

Regardless of the flatback airfoils, the tip vortex core of the outboard region is formed on the suction surface leading edge, and strongly rolled-up by the pressure surface boundary layers due to the large pressure difference between the suction surface and the pressure surface in the blade tip region. This remarkably strong tip vortex develops downstream, and rakes up the blade trailing edge boundary layer with low energy.

Copyright © 2015 by JSME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In