Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of Wire Effect in a Wire-Wrapped 37-Pin Fuel Assembly

[+] Author Affiliations
Jae-Ho Jeong, Jin Yoo, Kwi-Lim Lee, Kwi-Seok Ha

Korea Atomic Energy Research Institute, Daejeon, Korea

Paper No. AJKFluids2015-09805, pp. V01AT09A023; 10 pages
  • ASME/JSME/KSME 2015 Joint Fluids Engineering Conference
  • Volume 1A: Symposia, Part 2
  • Seoul, South Korea, July 26–31, 2015
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5721-3
  • Copyright © 2015 by JSME


The wire effect in a wire-wrapped 37-pin fuel assembly mock-up of a Japanese loop-type sodium-cooled fast reactor (SFR), Monju, has been investigated through a numerical analysis using a general-purpose commercial computational fluid dynamics (CFD) code, CFX. Complicated and vortical flow phenomena in the wire-wrapped 37-pin fuel assembly were captured by a Reynolds-Averaged Navier-Stokes (RANS) flow simulation with a shear stress transport (SST) turbulence model. The CFD results show good agreement with Rehme’s friction factor correlation model, which can consider the number of wire-wrapped pins in the fuel assembly. Three-dimensional multi-scale vortex structures start to be formed by an interaction between secondary flows around each wire-wrapped pin. Large-scale and small-scale vortex structures are generated in the corner and edge, and interior sub-channel, respectively. The behavior of the large-scale vortex structures in the corner and edge sub-channel are closely related to the relative position between the hexagonal duct wall and the wire spacer. Regardless of the relative position between the adjacent rod and wire spacer, a small-scale vortex is axially developed in the interior sub-channels. Furthermore, a driving force on each wire spacer surface is closely related to the relative position between the hexagonal duct wall and wire spacer. It is expected that the multi-scale vortex structures in the fuel assembly play a significant role in the convective heat transfer characteristics.

Copyright © 2015 by JSME
Topics: Fuels , Manufacturing , Wire



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In