Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Different Impeller Diameter on Cavitation Performance in an Engine Cooling Water Pump

[+] Author Affiliations
Wei Li, Weiqiang Li, Weidong Shi, Ling Zhou, Bing Pei

Jiangsu University, Zhenjiang, China

Paper No. AJKFluids2015-09754, pp. V01AT09A020; 7 pages
  • ASME/JSME/KSME 2015 Joint Fluids Engineering Conference
  • Volume 1A: Symposia, Part 2
  • Seoul, South Korea, July 26–31, 2015
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5732-8
  • Copyright © 2015 by KSME


The engine cooling water pump (ECWP) is an important part in the motor and engine. Using the advanced numerical methods and tools to enhance the ECWP performance, not only could reduce the power consumption and weight, but also can promote the safety and reliability of the vehicle system. The cavitation damage in the ECWP shortens the reliability and life of the motor cooling system, as well as produces vibration and noise. Cavitation in the ECWP has been become an important research topic.

To investigate the cavitation performance of ECWP with different impeller diameter, the three dimensional turbulent flow in the ECWP with different impeller diameter was numerically simulated employing the time averaged N-S equation, the standard k-ε turbulent model and multiphase flow model by ANSYS-CFX software. The structured hexahedral mesh has been generated for improving the accuracy of numerical simulation. Comparing with the experimental pump performance results, the cavitation performance is accurately predicted based on structured mesh and cavitation model. The comparison of fluid static pressure and vapor volume fraction contours, hydraulic and cavitation performance was made among different impeller diameter. The cavitation performance curve and bubble distributions under different impeller diameter were compared and analyzed, we find that absolute pressure at the critical cavitation point becomes higher with the decreasing of the impeller diameter, and the anti-cavitation performance becomes worse caused by the increasing of the volume fraction in the impeller. Therefore, there is an optimum impeller diameter value to guarantee the anti-cavitation performance and hydraulic performance of the investigated pump.

Copyright © 2015 by KSME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In