Full Content is available to subscribers

Subscribe/Learn More  >

Direct Numerical Simulation of Turbulent Channel Flow With Streamwise System-Rotation

[+] Author Affiliations
Masayoshi Okamoto

Shizuoka University, Hamamatsu-shi, Japan

Paper No. AJKFluids2015-08037, pp. V01AT08A001; 9 pages
  • ASME/JSME/KSME 2015 Joint Fluids Engineering Conference
  • Volume 1A: Symposia, Part 2
  • Seoul, South Korea, July 26–31, 2015
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5721-3
  • Copyright © 2015 by JSME


The direct numerical simulation (DNS) of the fully developed turbulent channel flows rotating along the streamwise direction with several rotation parameters and two Reynolds numbers is performed. The bulk mean velocity decreases with increasing the rotation parameter, but the decrement is weakened in the high Reynolds number case. Applying the second-kind Chebyshev polynomial expansion into the mean spanwise velocity, the second mode coefficient, which becomes large in the strong rotation, is greatly influenced by the Reynolds number effect. Due to the streamwise rotation, the derivative and integral length scales obtained from the streamwise two-point correlation are extended. From viewpoints of the quadrant analysis, spectral one and instantaneous visualization, the high correlation among three fluctuating velocity components appears and the low-speed streaks are accumulated in the strong rotation and high Reynolds number flow.

Copyright © 2015 by JSME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In