0

Full Content is available to subscribers

Subscribe/Learn More  >

U-RANS Simulation of Single Elbow Pipe Flow Experiments Simulating JSFR Hot-Leg Piping

[+] Author Affiliations
Hidemasa Yamano, Masaaki Tanaka

Japan Atomic Energy Agency, O-arai, Japan

Yukiharu Iwamoto

Ehime University, Matsuyama, Japan

Paper No. AJKFluids2015-03510, pp. V01AT03A008; 10 pages
doi:10.1115/AJKFluids2015-03510
From:
  • ASME/JSME/KSME 2015 Joint Fluids Engineering Conference
  • Volume 1A: Symposia, Part 2
  • Seoul, South Korea, July 26–31, 2015
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5721-3
  • Copyright © 2015 by JSME

abstract

This paper is intended to validate the numerical simulation tool, which is Unsteady Reynolds Averaged Navier-Stokes equation (U-RANS) approach with the Reynolds Stress Model using a commercial computational fluid dynamics code, by applying to the flow through a single short-elbow in the 1/10 and 1/3 scale water experiments simulating the Japan Sodium-Cooled Fast Reactor (JSFR) hot-leg piping. An additional objective of this paper is to investigate the effect of outlet condition at which the coolant overflows a partition wall in the upper part of an intermediate heat exchanger in the JSFR design.

The numerical results were in good agreement with the 1/10 and 1/3 scale experimental data indicating time-averaged velocity distributions, flow field visualization, and power spectral densities of pressure fluctuation. These comparisons can conclude that the U-RANS numerical simulation tool was validated with its applicability to a single short elbow flow. The numerical simulation has also shown that the unsteady flow fields in the short elbow flow, which was characterized by a cyclic secondary flow and the subsequent horseshoe vortex.

In this study, the effect of the outlet condition was also examined through the numerical simulation. At the outlet of the pipe, the simulation modeled the partition wall in the upper part of the intermediate heat exchanger, which has never been simulated in the experiments. The numerical simulation results were compared between with and without the intermediate heat exchanger at the pipe outlet in terms of the time-averaged velocity distribution, pressure fluctuation power spectral density, and so on. In the result, no significant difference between them was observed, so that it can be said that the effect of the outlet condition is negligibly small.

Copyright © 2015 by JSME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In