Full Content is available to subscribers

Subscribe/Learn More  >

Design Optimization of Axial-Flow Pump Blades Based on iSIGHT

[+] Author Affiliations
Lijian Shi, Fangping Tang, Rongsheng Xie, Lilong Qi

School of Hydraulic Energy and Power Engineering, Yangzhou, China

Zhengdong Yang

The Second Pumping Station Management of Huai’an, Huai an, China

Paper No. AJKFluids2015-02756, pp. V01AT02A011; 6 pages
  • ASME/JSME/KSME 2015 Joint Fluids Engineering Conference
  • Volume 1A: Symposia, Part 2
  • Seoul, South Korea, July 26–31, 2015
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5732-8
  • Copyright © 2015 by KSME


This paper research the influence of cascade dense degree and airfoil placed angle on hydralic performance of axial flow pump blades. Which combines the numerical optimization technology with the advanced CFD simulation technique, replaces designers’ experience by mathematical models for controlling of the blade design direction. Finally, a platform for of the optimization design of axial-flow pump blades is built in this paper. The platform which based on the multidisciplinary optimization software iSIGHT is to design and optimize the axial flow blades. The automatic optimization design platform for axial-flow blade was established, in which the parameterization modeling, mesh, flow computation and numerical optimization are combined together. The use of the numerical simulation software CFD for disciplinary analysis improved the reliability and accuracy of the results of the prediction model. Found the approximate geometric design parameters of the design conditions based on numerical simulation, and the technology of numerical optimization was used for constrained optimized analysis based on these parameters. Optimized impeller efficiency improved about 0.7% while satisfying the constraint condition, shows that the optimization method for axial flow blade base on iSIGHT platform is effective and feasible. Meanwhile, the optimization method can greatly shorten the design cycle, reduce design cost optimization.

Copyright © 2015 by KSME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In