Full Content is available to subscribers

Subscribe/Learn More  >

Wake Interaction of a Square Cylinder With a Splitter Plate Boundary Layer at a Low Reynolds Number

[+] Author Affiliations
Smriti Srivastava, Sudipto Sarkar

Galgotias University, Greater Noida, India

Paper No. AJKFluids2015-01793, pp. V01AT01A001; 6 pages
  • ASME/JSME/KSME 2015 Joint Fluids Engineering Conference
  • Volume 1A: Symposia, Part 2
  • Seoul, South Korea, July 26–31, 2015
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5721-3
  • Copyright © 2015 by KSME


One of the most important researches in bluff body aerodynamics is to control the shear layer evolution leading to vortex formation. This kind of research is closely associated with reduction of aerodynamics forces and acoustic noise. Passive and active control of wake-flow from bluff bodies have received a great deal of attention in the last few decades [1–4]. Keeping this in mind, authors investigate the interaction of a square cylinder (side of the square = a) wake with a flat plate (length L = a, width w = 0.1a) boundary layer positioned at various downstream locations close to the cylinder. The gap-to-side ratios are maintained at G/a = 0, 0.5, 1 and 2 (where G is the gap between square cylinder and plate), and the simulation is performed at a Reynolds number, Re = 100 (Re = Ua/v, where U is free stream velocity and v is kinematic viscosity). Instantaneous flow visualization, aerodynamic forces and vortex shedding frequencies for all cases are described to gain insight about the changes associated with wake of the cylinder when a short plate is kept in its downstream.

Copyright © 2015 by KSME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In