0

Full Content is available to subscribers

Subscribe/Learn More  >

An Experimental Investigation on Flow Behavior and Heat Transfer Affected by Roughness in the Circular Micro-Channels

[+] Author Affiliations
Yitu Tian, Haiwang Li

Beijing University of Aeronautics and Astronautics, Beijing, China

Paper No. MNHMT2016-6612, pp. V002T11A023; 8 pages
doi:10.1115/MNHMT2016-6612
From:
  • ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer
  • Volume 2: Micro/Nano-Thermal Manufacturing and Materials Processing; Boiling, Quenching and Condensation Heat Transfer on Engineered Surfaces; Computational Methods in Micro/Nanoscale Transport; Heat and Mass Transfer in Small Scale; Micro/Miniature Multi-Phase Devices; Biomedical Applications of Micro/Nanoscale Transport; Measurement Techniques and Thermophysical Properties in Micro/Nanoscale; Posters
  • Biopolis, Singapore, January 4–6, 2016
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4966-8
  • Copyright © 2016 by ASME

abstract

Surface roughness is one of the most important factors to determine the flow and heat transfer characteristics of the microchannel. This paper experimentally and theoretically investigated the effects of surface roughness for the flow and heat transfer behavior within the circular microchannel. The stainless steel circular microchannels were fabricated by electrical spark-erosion perforating and drilling separately to control the relative roughness of the surface which is 1% for drilling method and 1.5% for electrical spark-erosion perforating method. Each test piece includes 44 identical circular microchannels in parallel with diameter of 0.4 mm. In the experiments, the air flowed through the circular microchannels with Reynolds number changing from 200 to 2600. The results showed that the surface roughness in microchannels has a remarkable effect on the performance of flow behavior and heat transfer within the circular microchannel. The values of Poiseuille number and Nusselt number are higher when the surface relative roughness is larger. At the same time, the flow behavior is inconsistent with the behavior within the macrochannel. For the flow behavior, Poiseuille number increases monotonously with the increase of Reynolds number, and is higher than the constant theoretical value. The Reynolds number for the transition from laminar to turbulent flow is between 1400 and 1600. For the heat transfer property, Nusselt number also increases as the increase of the Reynolds number.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In