Full Content is available to subscribers

Subscribe/Learn More  >

Rarefaction Effects on Gas Mixing in Micro- and Nanoscales

[+] Author Affiliations
Masoud Darbandi, Moslem Sabouri

Sharif University of Technology, Tehran, Iran

Paper No. MNHMT2016-6604, pp. V001T06A004; 7 pages
  • ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer
  • Volume 1: Micro/Nanofluidics and Lab-on-a-Chip; Nanofluids; Micro/Nanoscale Interfacial Transport Phenomena; Micro/Nanoscale Boiling and Condensation Heat Transfer; Micro/Nanoscale Thermal Radiation; Micro/Nanoscale Energy Devices and Systems
  • Biopolis, Singapore, January 4–6, 2016
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4965-1
  • Copyright © 2016 by ASME


We present the rarefaction effects on diffusive mass transport in micro- and nanoscales using the results of direct simulation Monte Carlo DSMC method. Unlike the previous investigations, the momentum and heat contributions are eliminated from the computations via uniform velocity, pressure, and temperature field considerations. The effects of global Knudsen number on the diffusion phenomenon are studied for the same Peclet number and a unique mixer shape. The results indicate that there is considerable weakening in diffusion mechanism for high Knudsen number cases. As a result, the non-dimensional diffusive mass fluxes would decrease and the non-dimensional mixing length would increase as the Knudsen number increases. The effective diffusion coefficient is calculated throughout the mixer using the diffusive mass fluxes and the species mass fraction gradients. It is observed that the effective diffusion coefficient can vary considerably as a result of local rarefaction variations. It reaches to the lowest value at the point of confluence, where the maximum mass fraction gradient magnitude would occur for the species. Moving away from this point, the local rarefaction effects would weaken and the effective diffusion coefficient would reinforce subsequently. All the presented results indicate that there would be a convergent to a limiting behavior, which corresponds to the continuum mass diffusion case. Despite this, the local rarefaction level decreases continuously. Unfortunately, because of a considerable increase in the statistical fluctuations at very low rarefaction levels, the simulations do not provide reliable results in the limit of continuum regime.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In