0

Full Content is available to subscribers

Subscribe/Learn More  >

A Computational Simulation of Using Tungsten Gratings in Near-Field Thermophotovoltaic Devices

[+] Author Affiliations
J. I. Watjen, X. L. Liu, B. Zhao, Z. M. Zhang

Georgia Institute of Technology, Atlanta, GA

Paper No. MNHMT2016-6632, pp. V001T05A011; 8 pages
doi:10.1115/MNHMT2016-6632
From:
  • ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer
  • Volume 1: Micro/Nanofluidics and Lab-on-a-Chip; Nanofluids; Micro/Nanoscale Interfacial Transport Phenomena; Micro/Nanoscale Boiling and Condensation Heat Transfer; Micro/Nanoscale Thermal Radiation; Micro/Nanoscale Energy Devices and Systems
  • Biopolis, Singapore, January 4–6, 2016
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4965-1
  • Copyright © 2016 by ASME

abstract

Near-field thermophotovoltaic (NFTPV) devices have received much attention lately as attractive energy harvesting systems, whereby a heated thermal emitter exchanges super-Planckian near-field radiation with a photovoltaic (PV) cell to generate electricity. This work describes the use of a grating structure to enhance the power throughput of NFTPV devices, while increasing thermal efficiency by ensuring that a large portion of the radiation entering the PV cell is above the bandgap. The device is modeled as a one-dimensional high-temperature tungsten grating on a tungsten substrate that radiates photons to a room-temperature In0.18Ga0.82Sb PV cell through a vacuum gap of several tens of nanometers. Scattering theory is used along with the rigorous coupled-wave analysis to calculate the radiation exchange between the grating emitter and the PV cell. A parametric study is performed by varying the grating depth, period, and ridge width in the range that can be fabricated using available fabrication technologies. By optimizing the grating parameters, it is found that the power output can be improved by 40% while increasing the energy efficiency by 6% as compared with the case of a flat tungsten emitter. Reasons for the enhancement are investigated and found to be due to the surface plasmon polariton resonance, which shifts towards lower frequencies. This work shows a possible way of improving NFTPV and sheds light on how grating structures interact with thermal radiation at the nanoscale.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In