0

Full Content is available to subscribers

Subscribe/Learn More  >

Performance Analysis of Near-Field Thermophotovoltaic With a Multilayer Metallodielectric Emitter

[+] Author Affiliations
Y. Yang, J. Y. Chang, L. P. Wang

Arizona State University, Tempe, AZ

Paper No. MNHMT2016-6471, pp. V001T05A005; 10 pages
doi:10.1115/MNHMT2016-6471
From:
  • ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer
  • Volume 1: Micro/Nanofluidics and Lab-on-a-Chip; Nanofluids; Micro/Nanoscale Interfacial Transport Phenomena; Micro/Nanoscale Boiling and Condensation Heat Transfer; Micro/Nanoscale Thermal Radiation; Micro/Nanoscale Energy Devices and Systems
  • Biopolis, Singapore, January 4–6, 2016
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4965-1
  • Copyright © 2016 by ASME

abstract

The photon transport and energy conversion of a near-field thermophotovoltaic (TPV) system with a selective emitter composed of alternate tungsten and alumina layers and a photovoltaic cell sandwiched by electrical contacts are theoretically investigated in this paper. Fluctuational electrodynamics along with the dyadic Green’s function for a multilayered structure is applied to calculate the spectral heat flux, and photocurrent generation and electrical power output are solved from the photon-coupled charge transport equations. The tungsten and alumina layer thicknesses are optimized to match the spectral heat flux with the bandgap of TPV cell. The spectral heat flux is much enhanced when plain tungsten emitter is replaced with the multilayer emitter due to the mechanism of surface plasmon polariton coupling in the tungsten thin film. In addition, the invalidity of effective medium theory to predict photon transport in the near field with multilayer emitters is discussed. Effects of a gold back reflector and indium tin oxide front coating with nanometer thickness, which could practically act as the electrodes to collect the photon-generated charges on the TPV cell, are explored. Conversion efficiency of 23.7% and electrical power output of 0.31 MW/m2 are achieved at 100 nm vacuum gap when the emitter and receiver are respectively at temperatures of 2000 K and 300 K.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In