0

Full Content is available to subscribers

Subscribe/Learn More  >

On the Operational Parameters Effects on Two-Phase Pressure Drop Characteristics of Reentrant Copper Microchannels

[+] Author Affiliations
Daxiang Deng, Qingsong Huang, Yanlin Xie, Wei Zhou, Yue Huang

Xiamen University, Xiamen, China

Xiang Huang

Zhejiang University of Technology, Hangzhou, China

Paper No. MNHMT2016-6514, pp. V001T04A004; 8 pages
doi:10.1115/MNHMT2016-6514
From:
  • ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer
  • Volume 1: Micro/Nanofluidics and Lab-on-a-Chip; Nanofluids; Micro/Nanoscale Interfacial Transport Phenomena; Micro/Nanoscale Boiling and Condensation Heat Transfer; Micro/Nanoscale Thermal Radiation; Micro/Nanoscale Energy Devices and Systems
  • Biopolis, Singapore, January 4–6, 2016
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4965-1
  • Copyright © 2016 by ASME

abstract

Two-phase boiling in advanced microchannel heat sinks offers an efficient and attractive solution for heat dissipation of high-heat-flux devices. In this study, a type of reentrant copper microchannels was developed for heat sink cooling systems. It consisted of 14 parallel Ω-shaped reentrant copper microchannels with a hydraulic diameter of 781μm. Two-phase pressure drop characteristics were comprehensively accessed via flow boiling tests. Both deionized water and ethanol tests were conducted at inlet subcooling of 10°C and 40°C, mass fluxes of 125–300kg/m2·s, and a wide range of heat fluxes and vapor qualities. The effects of heat flux, mass flux, inlet subcoolings and coolants on the two-phase pressure drop were systematically explored. The results show that the two-phase pressure drop of reentrant copper microchannels generally increased with increasing heat fluxes and vapor qualities. The role of mass flux and inlet temperatures was dependent on the test coolant. The water tests presented smaller pressure drop than the ethanol ones. These results provide critical experimental information for the development of microchannel heat sink cooling systems, and are of considerable practical relevance.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In