0

Full Content is available to subscribers

Subscribe/Learn More  >

Performance Comparison of Nanofluids Through Plain Channel Considering the Effects of Uncertainties in Thermophysical Properties

[+] Author Affiliations
Ningbo Zhao, Qiang Wang, Shuying Li

Harbin Engineering University, Harbin, China

Paper No. MNHMT2016-6340, pp. V001T02A003; 9 pages
doi:10.1115/MNHMT2016-6340
From:
  • ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer
  • Volume 1: Micro/Nanofluidics and Lab-on-a-Chip; Nanofluids; Micro/Nanoscale Interfacial Transport Phenomena; Micro/Nanoscale Boiling and Condensation Heat Transfer; Micro/Nanoscale Thermal Radiation; Micro/Nanoscale Energy Devices and Systems
  • Biopolis, Singapore, January 4–6, 2016
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4965-1
  • Copyright © 2016 by ASME

abstract

To compare and understand the laminar thermal-hydraulic performance of plate-fin channel with rectangle plain fin by using variable thermophysical properties of the most commonly used nanofluids (Al2O3-water), a three-dimensional numerical study is investigated by using the single-phase approach at a constant wall temperature boundary condition. Different models published in literatures are considered for the thermal conductivity and viscosity. On this basis, a parametric analysis is conducted to evaluate the effects of various pertinent parameters including nanoparticle volume fraction (0%–4%), Brownian motion of nanoparticle and Reynolds number (800–1500) on the heat transfer and flow characteristics of plain fin channel in detail. All the numerical results demonstrate that the addition of Al2O3 nanoparticle can enhance the heat transfer and flow pressure loss of base fluid because of the higher thermal conductivity and viscosity for nanofluids. And these enhancements are more obvious by increasing the volume fraction of nanoparticle, increasing Reynolds number, and considering the effects of nanoparticle Brownian motion. In addition, there are significantly differences in the thermal and flow fields for different nanofluids models at a fixed Reynolds number, which means that the effective theoretical formulas and empiric corrections for the nanofluids thrmophysical properties need to be studied extensively in the future.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In