Full Content is available to subscribers

Subscribe/Learn More  >

Processing/Structure/Properties Relationships in Polymer Blends for the Development of Functional Polymer Foams

[+] Author Affiliations
Ali Rizvi, Chul B. Park

University of Toronto, Toronto, ON, Canada

Paper No. IMECE2015-50288, pp. V015T19A027; 9 pages
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 15: Advances in Multidisciplinary Engineering
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5758-8
  • Copyright © 2015 by ASME


In this study we present a comprehensive experimental investigation of the effect of polymer blending on the dispersed phase morphology and how the dispersed phase morphology influences the foaming behavior of the semicrystalline polymer matrix using three different material combinations: polyethylene (PE)/polypropylene (PP), PP/polyethylene terephthalate (PET) and PP/polytetrafluoroethylene (PTFE). Samples are prepared such that the dispersed phase domains exhibit either spherical or fibrillated morphologies. Measurements of the uniaxial extensional viscosity, linear viscoelastic properties and crystallization kinetics under ambient pressures and elevated pressures of carbon dioxide (CO2) are performed and the morphological features are identified with the aid of SEM. Batch foaming and lab-scale extrusion foaming experiments are performed, as a screening model for polymer processing, to show the enhancement of the foaming ability as a result of the blend morphology, taking into account the rheological behaviour and the effects of crystallization kinetics. The formation of high aspect ratio fibrils imparts unique characteristics to the semicrystalline matrix such as strain-hardening in uniaxial extensional flow, prolonged relaxation times, pronounced elastic properties and enhanced kinetics of crystallization. In contrast, the regular blends containing spherical dispersed phase domains do not exhibit such properties. Foam processing of the three blends reveals a marked broadening of the foaming window when the dispersed phase domains are fibrillated due to the concurrent increase in crystallization kinetics, improved elastic properties and strain hardening in extensional flow.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In