Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Layup and Matrix Toughness on Modeling Notched Carbon Fiber Panels in Out-of-Plane Bending

[+] Author Affiliations
Levi J. Suryan, Mitchell A. Daniels, John P. Parmigiani

Oregon State University, Corvallis, OR

Paper No. IMECE2015-51005, pp. V014T11A025; 7 pages
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 14: Emerging Technologies; Safety Engineering and Risk Analysis; Materials: Genetics to Structures
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5757-1
  • Copyright © 2015 by ASME


Predicting the damage progression behavior of fiber composites using finite element methods is an ongoing challenge in design of high performance structures. A common application of fiber composites is out-of-plane bending of a notched composite panel. This loading occurs, for example, in an aircraft fuselage near reinforcing members such as ribs or stringers. The material parameters used by the finite element package Abaqus that dictate damage progression behavior of fiber composites include 6 strength values which control when damage is initiated, and 4 energy parameters that control how damage propagates. The values of the initiation parameters (strengths) are often accurately known, however the values of the propagation parameters (energies) are often not accurately known. The consequences of these inaccuracies are not consistent. Current research indicates that accurate FEA results for out-of-plane bending always require accurate values for the material strengths. However the effect of inaccurate material propagation energy values can vary depending on composite laminate layup. Understanding how these effects vary and which values are important can help a designer select a material and/or determine which propagation energy values need to be accurately determined. This study uses the Abaqus implicit FEA solver to model center notched carbon fiber panels to explore the effect of ply orientation on the sensitivity of maximum load to values of matrix tensile propagation energy and matrix compressive propagation energy. Preliminary studies of this loading scenario showed that these values have significant effects on maximum load only for certain layups. Five different 20 ply layups were chosen for this study with varying number of plies oriented in the 90 degree direction. The 90 degree direction is defined as perpendicular to the bending stresses and parallel to the notch. For each layup, matrix compressive and tensile propagation energies were specified at ±20% from their nominal values to create two-level factorials. Each layup was also run using nominal values as a center point to assess linearity of the effects. Furthermore, damage propagation paths were compared to understand how damage propagation was being affected. This way, nonlinear effects of matrix propagation energy values on maximum load could be separated from any regime changes in damage propagation. The results of this study lend understanding to the finite element analyst on how layup affects the need for high-accuracy values of certain material properties. Accurate FEA results for some layups do not depend on accurate matrix propagation energy values. Having this in mind can save significant resources in the fiber composite design process by eliminating unnecessary destructive tests to determine material property values accurately.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In