Full Content is available to subscribers

Subscribe/Learn More  >

Energy Absorption Characteristics of a Carbon Fiber Composite Automobile Lower Rail: A Comparative Study

[+] Author Affiliations
Muhammad Ali, Khairul Alam, Eboreime Ohioma

Ohio University, Athens, OH

Paper No. IMECE2015-50486, pp. V014T11A023; 5 pages
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 14: Emerging Technologies; Safety Engineering and Risk Analysis; Materials: Genetics to Structures
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5757-1
  • Copyright © 2015 by ASME


Composite materials have emerged as promising materials in applications where low weight and high strengths are desired. Aerospace industry has been using composite materials for past several decades exploiting their characteristics of high strength to weight ratio over conventional homogenous materials. To provide a wider selection of materials for design optimization, and to develop lighter and stronger vehicles, automobile industries have been exploring the use of composites for a variety of components, assemblies, and structures. Composite materials offer an attractive alternate to traditional metals as designers have greater flexibility to optimize material and structural shapes according to functional requirements. However, any automotive structure or part constructed from composite materials must meet or exceed crashworthiness standards such as Federal Motor Vehicle Safety Standard (FMVSS) 208. Therefore, for a composite structure designed to support the integrity of the automotive structure and provide impact protection, it is imperative to understand the energy absorption characteristics of the candidate composite structures. In the present study, a detailed finite element analysis is presented to evaluate the energy absorbing characteristics of a carbon fiber reinforced polymer composite lower rail, a critical impact mitigation component in automotive chassis. For purposes of comparison, the analysis is repeated with equivalent aluminum and steel lower rails. The study was conducted using ABAQUS CZone module, finite element analysis software. The rail had a cross-sectional dimension of 62 mm (for each side), length of 457.2 mm, and a wall thickness of 3.016 mm. These values were extracted from automobile chassis manufacturer’s catalog. The rail was impacted by a rigid plate of mass 1 tonne (to mimic a vehicle of 1000 Kg gross weight) with an impact velocity of 35 mph (15646.4 mm/s), which is 5 mph over the FMVSS 208 standard, along its axis. The simulation results show that the composite rail crushes in a continuous manner under impact load (in contrast to a folding collapse deformation mode in aluminum and steel rails) which generates force-displacement curve with invariable crushing reactive force for the most part of the crushing stroke. The energy curves obtained from reactive force-displacement graphs show that the composite rail absorbs 240% and 231% more energy per unit mass as compared to aluminum and steel rails. This shows a significant performance enhancement over equivalent traditional metal (aluminum and steel) structures and suggests that composite materials in conjunction with cellular materials/configurations have a tremendous potential to improve crashworthiness of automobiles while offering opportunities of substantial weight reductions.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In