Full Content is available to subscribers

Subscribe/Learn More  >

LEFM to Investigate the Impact of Deteriorated Particles in Composite Material

[+] Author Affiliations
Waleed K. Ahmed

United Arab Emirates University, Al Ain, UAE

Wail Al-Rifaie

Philadelphia University, Amman, Jordan

Y. Al-Douri

University Malaysia Perlis, Kangar, Malaysia

Mostefa Bourchak

King Abdulaziz University, Jeddah, Saudi Arabia

Paper No. IMECE2015-50223, pp. V014T11A022; 7 pages
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 14: Emerging Technologies; Safety Engineering and Risk Analysis; Materials: Genetics to Structures
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5757-1
  • Copyright © 2015 by ASME


Due to its distinguished properties especially being isotropic, particulate reinforced composite is considered as one of the attractive material for wide range of applications, where the relatively low manufacturing cost is a desirable advantage. In the present analysis, deteriorated particles embedded in particulate reinforced composite have been investigated. The impact of the fractured particles is studied through the principles of fracture mechanics using finite element method. Mainly the stiffness variation of the composite due to the presence of the fractured particles is mainly predicted, since it is considered as an important factor especially from the view point of the damage-tolerant design of composite structures. A representative volume element (RVE) has been selected to represent the particulate composite with different particle volume fractions. It is important to point out that based on a previous investigation and comparison between two and three dimensional finite element analysis for a particulate reinforced composite, two-dimensional, plane strain finite element analysis is used to estimate the stresses and deformation that taken place. Uniaxial tensile stress perpendicular to the crack face of the fractured particle has been applied to the representative volume element. Due to symmetry of the studied geometries, quarter of the representative volume element is modeled via finite element method with a consistent mesh as possible to maintain reliable results. Linear elastic fracture mechanics (LEFM) is adopted through estimating stress intensity factor (SIF) of the cracked particles. Basically, the investigation covers the assessment of fractured particles with different crack lengths, where the particle’s stiffness is considered as a substantial parameter in the analysis in combination with others. Moreover, various particles volume fractions are taken into account to figure out their influence on the effective Young’s modulus of the representative volume element chosen for the studied cases. Multiple point constraints (MPC) technique is adopted in the finite element model to calculate the effective stiffness of the fractured particle. In general, it has been shown that there is a considerable influence of the deteriorated particles on increasing stress intensity factor levels at the crack tip as long as the crack length increases with respect to the particle size, and this basically depends on the stiffness ratio of the matrix/particle considered in the analysis. In the other hand, it has been noticed that a significant reduction in the effective stiffness of the particulate composite which is calculated based on the modeled representative volume element as a function of the crack length.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In