0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Reinforcement Type and Extrusion on the Microstructure and Mechanical Behavior of Al Alloy Composites

[+] Author Affiliations
Shanmuga Sundaram Karibeeran

Anna University, Chennai, India

Dhanalakshmi Sathishkumar, Sivakumar Palanivelu

Combat Vehicles Research & Development Establishment, Tamil Nadu, India

Balasubramanian Muthaih

Indian Institute of Technology Madras, Chennai, India

Paper No. IMECE2015-50113, pp. V014T11A014; 6 pages
doi:10.1115/IMECE2015-50113
From:
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 14: Emerging Technologies; Safety Engineering and Risk Analysis; Materials: Genetics to Structures
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5757-1
  • Copyright © 2015 by ASME

abstract

Aluminum based metal matrix composites offer greater potential for light weight, wear resistant and high temperature applications. Secondary processing like extrusion results in the improvement of strength and ductility of the as-cast composites. The objective of this research is to investigate the effect of reinforcement type and extrusion process on the microstructure and mechanical properties of the hot extruded Al2014 aluminum alloy. Two different composites were made by reinforcing the alloy with 10 wt.% SiC and 10 wt.% Si3N4 particles using stir casting method. The particles were electroless Ni coated to improve the wettability of reinforcement by the matrix alloy. The composite ingots were further extruded at 475 °C with an extrusion ratio of 8:1. The microstructures and the mechanical properties of the base alloy and the composites were examined systematically. The extruded composites show more homogenous microstructure with uniform distribution of particles in the matrix alloy. Both the Al/SiC and Al/Si3N4 composites exhibited improved hardness compared to the base alloy in both as-cast and extruded conditions. It was also found from tension tests that the both the composites show higher yield strength, ductility and ultimate tensile strength (UTS) than the base alloy in the extruded condition. The reason for improvement in strength in the extruded conditions is explained in detail. Fracture surface analysis revealed the transition from brittle fracture mode in the as cast composites to the ductile fracture in the extruded condition.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In