0

Full Content is available to subscribers

Subscribe/Learn More  >

Synthesis and Characterization of Chitosan-Mg-Based Composite Scaffolds for Bone Repair Applications

[+] Author Affiliations
Udhab Adhikari, Nava P. Rijal, Devdas Pai, Jagannathan Sankar, Narayan Bhattarai

North Carolina A&T State University, Greensboro, NC

Paper No. IMECE2015-53082, pp. V014T11A010; 6 pages
doi:10.1115/IMECE2015-53082
From:
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 14: Emerging Technologies; Safety Engineering and Risk Analysis; Materials: Genetics to Structures
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5757-1
  • Copyright © 2015 by ASME

abstract

Bone has a remarkable ability to regenerate and heal itself when damaged. Most minor injuries heal naturally over time, but when the defects are larger, they require a substrate to support the cell growth and guide the repair process. Bone grafting is currently done by using either an autograft, where the substrate is harvested from a suitable donor site within the patient’s body; or an allograft, where the substrate is harvested from a cadaver. However, both techniques have significant drawbacks. In autografting, significant complications tend to arise from donor site morbidity. In allografting, the issues are the risk of disease transmission, and the logistical difficulties in the local or even global matching process for donor tissue. A third approach, employing tissue-engineered scaffold materials, provides superior performance by helping to restore bone tissue functions during regeneration and by subsequent resorption of the graft material as new bone tissue forms. These bioactive scaffolds are porous and made of natural materials that are capable of harboring growth factors, drugs, genes, or stem cells. The objectives of this research are to synthesize biofunctional composite scaffold materials, based on chitosan (CS) and magnesium (Mg), for use in bone regeneration and to measure their physiochemical properties. Scaffolds were fabricated from the aqueous dispersions of starting materials by subsequent freezing and phase separation by the lyophilization process. A CS solution was prepared by dissolving CS in 2 % (v/v) acetic acid solution, whereas carboxymethyl chitosan (CMC) was dissolved in deionized water. The concentrations of CS and CMC (in a constant 1:1 weight ratio) ranged between 2% and 5 %. Various dry weight percentages of Mg gluconate (MgG) were added to the scaffolds by dissolving the MgG solution in the CS/CMC. SEM imaging showed the scaffolds to possess uniform porosity with a pore size distribution range of 100–150 μm. Micro CT analysis showed that the pores were distributed throughout the scaffold’s entire volume and they were highly interconnected. Compressive strengths of up to 340 kPa and compressive moduli of up to 5 MPa were obtained for these fabricated scaffolds. When introduced into a cell culture medium, these scaffolds were found to remain intact, retaining their original three-dimensional frameworks and ordered porous structures maintaining sufficient mechanical strength. These observations provide a new effective approach for preparing scaffold materials suitable for bone tissue engineering.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In