Full Content is available to subscribers

Subscribe/Learn More  >

Structural, Mechanical and Corrosion Properties of Mg/SiO2 and MgO/SiO2 Multilayer Coatings for Magnesium Implant Devices

[+] Author Affiliations
R. Kotoka, S. Fialkova, S. Neralla, S. Yarmolenko, D. Pai, J. Sankar

North Carolina A&T State University, Greensboro, NC

Paper No. IMECE2015-51767, pp. V014T11A008; 7 pages
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 14: Emerging Technologies; Safety Engineering and Risk Analysis; Materials: Genetics to Structures
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5757-1
  • Copyright © 2015 by ASME


In this study, Mg/SiO2 and MgO/SiO2 multilayer coatings with bilayer thicknesses (Λ) 10, 20, 40, 100, 200 and 1000 nm were deposited on glass substrates using DC and reactive pulsed DC magnetron sputtering processes. The aim of these coatings is to control the initial degradation and provide mechanical strength to magnesium implant during handling and installation. The initial thickness calibrations and deposition rates optimization were conducted using stylus profilometer. After deposition of the multilayer coatings, the values of their bilayer thicknesses (Λ) were obtained from X-ray reflectometery. The mechanical properties, surface morphology and roughness of multilayer coatings were studied using nanoindentation, SEM and AFM respectively. The nanoindentation results showed higher hardness of MgO/SiO2 multilayer coatings compared to single layer Mg. The roughness analyses showed improved roughness for bilayer thicknesses (Λ) less than 20 nm. It was observed from the SEM images that SiO2 coatings has pores. By adding Mg and/or MgO in the form of multilayers improves the pores significantly. The Mg/SiO2 multilayer coatings showed controlled degradation rate when immersed in saline solution compared to the monolithic SiO2 coating. In conclusion, conditions for depositing Mg/SiO2 and MgO/SiO2 multilayer coatings has been optimized. Alternating brittle SiO2 ceramic layers with soft and ductile Mg layers significantly improved the hardness of the Mg coating. Hardness of multilayer coatings can be fine-tuned by modifying bilayer thicknesses. Significant improvement in the corrosion and mechanical properties of the multilayer coatings can be used to protect surface of magnesium implant material during handling, storage and installation.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In