Full Content is available to subscribers

Subscribe/Learn More  >

Robustness Analysis of Algorithms to Estimate Constitutive Laws of Biological Filaments

[+] Author Affiliations
Jessica Gray, Soheil Fatehiboroujeni, Sachin Goyal

University of California Merced, Merced, CA

Paper No. IMECE2015-52113, pp. V014T11A006; 10 pages
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 14: Emerging Technologies; Safety Engineering and Risk Analysis; Materials: Genetics to Structures
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5757-1
  • Copyright © 2015 by ASME


The structure-function relationship of biological filaments is greatly impacted by their mesoscale mechanics that involves twisting and bending deformations. For example, the mechanics of DNA looping is a key driver in gene regulation. The continuum-rod models have emerged as efficient tools for simulating the nonlinear dynamics of such deformations. However, there is no direct way to derive or measure the constitutive law of biological filaments for their continuum modeling. Therefore, it is an active area of research to develop inverse algorithms based on a continuum rod model that can estimate the constitutive law from the atomistic configurations of the filament. This paper presents a set of such algorithms that can use data from the dynamic states of deformation obtained from atomistic simulations or other sources. Depending on the kinematic quantities that are computed from the configuration data, the inverse algorithms differ in their steps to estimate the internal restoring moments and forces. The paper investigates and compares the robustness of these inverse algorithms accounting for the effect of noise in the data.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In