0

Full Content is available to subscribers

Subscribe/Learn More  >

Reliability Analysis of Repairable System With Multiple-Input and Multi-Function Component Based on GO Methodology

[+] Author Affiliations
Xiaojian Yi, Huina Mu, Haiping Dong

Beijing Institute of Technology, Beijing, China

Jian Shi

Chinese Academy of Sciences, Beijing, China

Zhong Zhang

China North Vehicle Research Institute, Beijing, China

Paper No. IMECE2015-51289, pp. V014T08A016; 9 pages
doi:10.1115/IMECE2015-51289
From:
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 14: Emerging Technologies; Safety Engineering and Risk Analysis; Materials: Genetics to Structures
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5757-1
  • Copyright © 2015 by ASME

abstract

GO methodology is a success-oriented method for system reliability analysis. There are Multiple-Input, which contain control signal, oil provided and electrical signal et.al and MultiFunction Components (MIMFC) in some repairable systems, such as double-action variable displacement pump, multiple directional control valve, and hydraulic coupler etc. Because existing 17 basic GO operators in GO methodology can’t describe these MIMFCs accurately, it is a problem to adopt existing GO methodology to conduct the reliability analysis for these systems with MIMFC. In this paper, firstly a new GO operator combination, which is composed of a new function GO operator and a new auxiliary GO operator, is created to represent MIMFC. The new function GO operator named as Type 22 operator is created to represent MIMFC itself, and the auxiliary GO operator named as Type 15B operator is created to represent multi-conditions control signals of MIMFC. Then, quantitative calculation formulas of new GO operator combination are derived based on logical relationships among inputs, outputs, and component itself. Thirdly, this new GO operator combination is applied for the first time in steady availability analysis and qualitative analysis of the fan drive system of a Power-shift Steering Transmission. Finally, the results obtained by the method in this paper are compared with the result of Fault Tree Analysis (FTA) and result of Monte Carlo simulation, and the comparison results show that this new GO operator combination is usable and correct for reliability analysis of repairable system with MIMFC, and it has more advantageous in the aspects of building system model and quantitative analysis. Meantime, this paper provides guidance for reliability analysis of other repairable systems with MIMFC.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In