Full Content is available to subscribers

Subscribe/Learn More  >

Methods of Accident Reconstruction: Biomechanical and Human Factors Considerations

[+] Author Affiliations
Erick H. Knox, Anne C. Mathias, Michael P. Van Bree, Dennis B. Brickman

Engineering Systems Inc., Aurora, IL

Amber Rath Stern

Engineering Systems Inc., Charlotte, NC

Paper No. IMECE2015-53666, pp. V014T08A005; 11 pages
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 14: Emerging Technologies; Safety Engineering and Risk Analysis; Materials: Genetics to Structures
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5757-1
  • Copyright © 2015 by ASME


Accident reconstruction involving consumer products and industrial equipment often requires biomechanical and/or human factors analyses to help determine the root cause of an accident scenario. A systematic method has been established which incorporates numerous components of the sciences of biomechanics and human factors and uses the scientific method as the framework for evaluating competing theories. Using this method, available data are gathered pertaining to the accident or incident and organized in a modified Haddon matrix, with categories for Man [person(s) involved in the accident], Product/Machine, and Environment. Information about the person(s) is separated further into injury and human factors components. The injuries are viewed as physical evidence, where each injury occurred as a result of being exposed to a specific combination of energy, force, motion/deflection, acceleration, etc. The injuries are evaluated with known injury research and categorized with a specific type, location, mechanism, and injury threshold. This injury evidence is then reconciled with the other physical evidence developed from the accident environment and product/machine categories. Human factors evaluations of body size, posture, capabilities, sensory perception, reaction time, and movements create similar information that is also reconciled with the rest of the evidence from an accidental circumstance. At the core of this method is developing scientific data or information that can be used to support or refute accident reconstruction conclusions. An accurate and complete accident reconstruction using the available data must be consistent with the laws of physics, and the physics of interaction between the man, product/machine, and environment.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In