0

Full Content is available to subscribers

Subscribe/Learn More  >

Finite Element and Mechanical Modeling of Fatigue Behavior of Partial Vapor-Conditioned Viscoelastic Material

[+] Author Affiliations
Mohammad Hossain, A. S. M. Atiqur Rahim Khan

Bradley University, Peoria, IL

Hasan Faisal, Rafiqul Tarefder

University of New Mexico, Albuquerque, NM

Paper No. IMECE2015-51147, pp. V010T13A010; 10 pages
doi:10.1115/IMECE2015-51147
From:
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 10: Micro- and Nano-Systems Engineering and Packaging
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5753-3
  • Copyright © 2015 by ASME

abstract

Past studies have shown that vapor conditioning to 100% Relative Humidity (RH) reduces the fatigue life of viscoelastic materials such as asphalt binder. However, it is not known how partial vapor conditions such as RH 25%, 49%, and 71% affect asphalt binder’s fatigue behavior. In addition, it is unknown which viscoelastic material parameter (i.e. viscus or elastic parameter) is responsible for damage in asphalt binder or Asphalt Concrete (AC) in general and what steps can be taken to reduce fatigue damage. In this study, films of asphalt binders were prepared and partially vapor-conditioned in enclosed chambers containing potassium acetate (25% RH), potassium carbonate (49% RH), and sodium chloride solutions (71% RH). Creep nanoindentation tests were performed on the vapor-conditioned asphalt film samples. The nano-creep test data are fitted using Burgers models. The Burgers model shows that elasticity increases and viscosity decreases as RH% increases. To this end, a Finite Element Method (FEM) model is developed in ABAQUS to examine the fatigue performance of the asphalt binder at 49% vapor-conditioned only. Using the spring and dashpot elements of Burgers model as FEM inputs, simulations are run. Results indicate that an increase in binder viscosity would reduce permanent deformation in the viscoelastic material.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In