0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of Crack Propagation Behavior of High Density Polyethylene by Using Crack Layer Theory: Parametric Study

[+] Author Affiliations
Jung-Wook Wee, Byoung-Ho Choi

Korea University, Seoul, Korea

Paper No. IMECE2015-51266, pp. V009T12A075; 7 pages
doi:10.1115/IMECE2015-51266
From:
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5752-6
  • Copyright © 2015 by ASME

abstract

Creep and fatigue slow crack propagation of engineering thermoplastics display continuous or discontinuous manner depending on the test condition. It could be simulated accurately by use of crack layer theory with theoretical backgrounds. But many input parameters complexify the use of CL theory. Thus the investigation on the effect of material parameters on the CL growth is necessary for the comprehensive understanding. In this paper, a parametric study of CL growth simulation of single edge notched tension specimen in creep condition was performed. Several material parameters were varied so that the effect of input parameters on the CL growth behavior could be understood. Total lifetime is used to figure out the effect of the parameters quantitatively. This study would be beneficial to understand the effect of material parameters on the slow crack growth behavior of high density polyethylene.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In