Full Content is available to subscribers

Subscribe/Learn More  >

Synthesis and Processing of Solution Spun Cellulose Acetate Fibers Reinforced With Carbon Nanotubes

[+] Author Affiliations
Quazi Nahida Sultana, Saheem Absar, Stephanie Hulsey, Hans Schanz, Mujibur Khan

Georgia Southern University, Statesboro, GA

Paper No. IMECE2015-50804, pp. V009T12A070; 7 pages
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5752-6
  • Copyright © 2015 by ASME


We report the fabrication of Cellulose Acetate (CA) based fibers reinforced with Multi-Walled Carbon Nanotubes (MWCNTs) using a solution spinning process. The motivation of this work is to produce high performance fibers based on sustainable natural materials as an alternative to synthetic fibers for structural applications. A 30 wt% solution of CA in a binary solvent system of N, N-dimethylacetamide (DMAc) and Acetone (3:7 v/v) was used for the solution spinning of CA fibers. Both neat and CNT-loaded CA fibers were produced. The CNT loading with respect to the polymer was at 0.5 wt%. For CA-MWCNT spinning solutions, the MWCNTs were initially dispersed in the solvent and then CA is added and mixed together. The mixing temperature kept 40–45°C. The viscosity of the CA solution was 8,000 cP. Addition of MWCNT increased the viscosity of the CA solution to 32,000 cP. A lab-scale solution spinning line consisting of a constant torque high temperature gear pump and heated extrusion channels was used to produce both neat and CA-MWCNT fibers. The solution was pumped through a spinneret at the end of the extrusion channel with an orifice as a viscous gel-like filament which was passed through a spool placed in a coagulation bath and then it formed as fiber. The fibers are collected to a takeup roll at a draw ratio of 8.0. Characterization studies of both neat and MWCNT loaded fibers were performed differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA) and scanning electron microscopy (SEM). DSC analysis of fibers showed reduction in crystallinity of CA upon inclusion of 0.5 wt% MWCNT. TGA analysis showed improvement of thermal stability in CA-MWCNT fibers compared to neat CA. Cross-sections of neat CA fibers showed smooth surfaces with no significant defects, while CA-MWCNT showed formation of micro-voids and irregular features. Longitudinal views of outer surface of both neat CA and CA-MWCNT fibers showed no indication of surface defects or protrusions.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In