0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Cold Storage on Mechanical Properties of Aorta

[+] Author Affiliations
Shijia Zhao, Linxia Gu

University of Nebraska-Lincoln, Lincoln, NE

John Lof, Shelby Kutty

University of Nebraska Medical Center, Omaha, NE

Paper No. IMECE2015-51610, pp. V009T12A049; 5 pages
doi:10.1115/IMECE2015-51610
From:
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5752-6
  • Copyright © 2015 by ASME

abstract

Aortic allografts have been widely used in treatments of congenital heart diseases with satisfactory clinical outcomes. They were usually cryopreserved and stored for surgical use. The objective of this work was to investigate the effect of cold storage on mechanical properties of aorta, since the compliance mismatch was one important factor associated with the complication after graft surgery. The segments of porcine descending aorta were divided into two groups: the fresh samples which were tested within 24 hours after harvesting served as control group, and frozen samples which were stored in −20°C for 7 days and then thawed. The uniaxial tension tests along circumferential direction and indentation tests were conducted. The average incremental elastic moduli within each stretch range were obtained from the experimental data obtained during tension tests, and the elastic moduli were also calculated by fitting the force-indentation depth data to Hertz model when the tissue was stretched at 1.0, 1.2, 1.4 and 1.6. In addition, the average incremental elastic moduli of both fresh and frozen aortic tissue along axial direction were also obtained by using uniaxial tension tests. The comparison showed that cold storage definitely increased the average incremental elastic modulus of the aortic tissue along circumferential direction; however, the difference is not significant for the elastic moduli along axial direction.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In