Full Content is available to subscribers

Subscribe/Learn More  >

Biomechanical and Biochemical Study of Muscle-Tendon-Bone in Porcine Digital Flexor Tendon

[+] Author Affiliations
Bryan B. Danley, Shadow Huang

North Carolina State University, Raleigh, NC

Paper No. IMECE2015-52360, pp. V009T12A047; 5 pages
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5752-6
  • Copyright © 2015 by ASME


The musculoskeletal system provides the body with both movement and support. In particular, contractile forces developed in the muscles are transmitted through the muscle-tendon junction (MTJ) into the tendon and then through the tendon-bone insertion into the bone. Each junction occurs between two dissimilar materials (muscle-to-tendon and tendon-to-bone) and neither is fully understood. The current study analyzes the relationship between the tissue microstructure and macro-scale biomechanical properties of the muscle-tendon-bone unit to better understand the anisotropic mechanical behavior of the tissue. Collagen content was assayed at various locations along the porcine digital flexor tendon. Collagen concentration as a percent of the wet weight in the bone end was found to be 20.4±5.2% (n=6), the mid tendon to be 20.6±5.3% (n=6), and the muscle end to be 25.2±3.6% (n=4). No statistical differences were found between these collagen concentrations.

Additionally, to the best of the authors’ knowledge, this is the first study to report cross-sectional stress-strain data for the muscle-tendon-bone unit. Results indicate that the tendon cross-sectional stiffness increases from the proximal end to the distal end. However, no direction dependent anisotropies were found between the mediolateral and dorsopalmar directions. Effects of microstructural components, such as glycosaminoglycans and collagen, and phenomenon such as fibril sliding and cross-linking, are discussed in relation to the reported cross-section stress-strain response. This work provides a synergistic approach for quantifying biomechanical and biochemical properties of biological tissue, and potentially facilitates the development of tissue engineered MTJ and tendon-bone insertion.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In