0

Full Content is available to subscribers

Subscribe/Learn More  >

Coarse-Grained Molecular Dynamics Simulations of Sugar Transport Across Lactose Permease

[+] Author Affiliations
Yead Jewel, Prashanta Dutta, Jin Liu

Washington State University, Pullman, WA

Paper No. IMECE2015-52337, pp. V009T12A046; 5 pages
doi:10.1115/IMECE2015-52337
From:
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5752-6
  • Copyright © 2015 by ASME

abstract

Sugar (one of the critical nutrition elements for all life forms) transport across the cell membranes play essential roles in a wide range of living organism. One of the most important active transport (against the sugar concentration) mechanisms is facilitated by the transmembrane transporter proteins, such as the Escherichia coli lactose permease (LacY) proteins. Active transport of sugar molecules with LacY proteins requires a proton gradient and a sequence of complicated protein conformational changes. However, the exact molecular mechanisms and the protein structural information involved in the transport process are largely unknown. All atom atomistic simulations are able to provide full details but are limited to relative small length and time scales due to the computational cost. The protein conformational changes during sugar transport across LacY are large scale structural reorganization and inaccessible to all atom simulations. In this work, we investigate the molecular mechanisms and conformational changes during sugar transport using coarse-grained molecular dynamics (CGMD) simulations. In our coarse-grained force field, we follow the procedures developed by Han et al. [1, 2], in which the protein model is united-atom based and each heavy atom together with the attached hydrogen atoms is represented by one site, then the protein force filed is coupled with the MARTINI [3] water and lipid force fields. This hybrid force field takes the advantage of the efficiency of MARTINI force field for the environment (water and lipid), while retaining the detailed conformational information for the proteins. Specifically, we develop the new force fields for interactions between sugar molecules and protein by matching the potential of mean force between all-atom and coarse-grained models. Then we validate our force field by comparing the potential of mean force for a glucose interaction with a carbohydrate binding protein from our new force field, with the results from all atom simulations. After validation, we implement the force field for sugar transport across LacY proteins. Through our simulations we are able to capture the formation/breakage of the important hydrogen bonds and salt bridges, which are crucial to the overall conformational changes of LacY.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In