0

Full Content is available to subscribers

Subscribe/Learn More  >

Load Transfer Index for Composite Materials

[+] Author Affiliations
Qingguo Wang, Khashayar Pejhan, Christine Q. Wu, Igor Telichev

University of Manitoba, Winnipeg, MB, Canada

Paper No. IMECE2015-51176, pp. V009T12A009; 7 pages
doi:10.1115/IMECE2015-51176
From:
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5752-6
  • Copyright © 2015 by ASME

abstract

Load transfer analysis is a new paradigm for lightweight vehicle design. U* index has been proved to be an effective indicator for the load path. The U* theory indicates that the external loading mainly transfers through the parts with higher U* values in the structure. However, the fundamental equations of the theory are based on isotropic, homogenous, and linear elastic assumptions for the materials. Consequently, U* index is inadequate for composite materials which are increasingly used in automotive structures. In this study, a new load transfer index for composite structures, U*O, is proposed for the first time inspired by the basic U* theory. The U*O index considers the composite material as orthotropic instead of isotropic and eliminates the limitation of the basic U*. The effectiveness of the new U*O index on load path prediction is demonstrated by a case study for a general Graphite-epoxy lamina. The U*O index is capable to evaluate the accurate load path for the composite specimen. By contrast, the basic U* analysis shows the incorrect results.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In