0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Longitudinal Vortex Generator Location on Thermoelectric-Hydraulic Performance of a Single Stage Integrated Thermoelectric Power Generator

[+] Author Affiliations
Samruddhi Deshpande, Bharath Viswanath Ravi, Jaideep Pandit, Scott Huxtable, Srinath Ekkad

Virginia Tech, Blacksburg, VA

Ting Ma

Xi’an Jiaotong University, Xi’an, China

Paper No. IMECE2015-52244, pp. V08BT10A056; 10 pages
doi:10.1115/IMECE2015-52244
From:
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 8B: Heat Transfer and Thermal Engineering
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5750-2
  • Copyright © 2015 by ASME

abstract

Vortex generators have been widely used to enhance heat transfer in various heat exchangers. Out of the two types of vortex generators: Transverse vortex generators (TVGs) and longitudinal vortex generators (LVGs), LVGs have been found to show better heat transfer performance. Past studies have shown that the implementation of these LVGs can be used to improve heat transfer in thermoelectric generator systems. Here a built in module in COMSOL Multiphysics® was used to study the influence of the location of LVGs in the channel on the comprehensive performance of an integrated thermoelectric device (ITED). The physical model under consideration consists of a copper interconnector sandwiched between p-type and n-type semiconductors and a flow channel for hot fluid in the center of the interconnector. Four pairs of, LVGs are mounted symmetrically on the top and bottom surfaces of the flow channel. Thus, using numerical methods, the thermo-electric-hydraulic performance of the ITED with a single module is examined. By fixing the material size D, the fluid inlet temperature Tin, and attack angle β; the effects of the location of LVGs and Reynolds number were investigated on the heat transfer performance, power output, pressure drop and thermal conversion efficiency. The location of LVGs did not have significant effect on the performance of TEGs in the given model. However, the performance parameters show a considerable change with Reynold’s number and best performance is obtained at Reynold number of Re = 500.

Copyright © 2015 by ASME
Topics: Vortices , Generators

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In