0

Full Content is available to subscribers

Subscribe/Learn More  >

Wettability Effect on Droplet Growth Behaviors During Dropwise Condensation

[+] Author Affiliations
Jae Bin Lee, Seong Hyuk Lee

Chung-Ang University, Seoul, Korea

Chang Kyoung Choi

Michigan Technological University, Houghton, MI

Jungho Lee

Korea Institute of Machinery & Materials, Daejeon, Korea

Paper No. IMECE2015-52930, pp. V08BT10A053; 4 pages
doi:10.1115/IMECE2015-52930
From:
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 8B: Heat Transfer and Thermal Engineering
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5750-2
  • Copyright © 2015 by ASME

abstract

The present study examines the transient characteristics of droplet growth and heat transfer during dropwise condensation process on different hydrophobic surfaces. The self-assembled monolayer (SAM) of n-octadecyl mercaptan was coated on the surface to change the surface wettability with the contact angles of 148° and 124°. A Canon EOS 7D camera and an Infinity K2 lens were used to capture the spontaneous images during condensation. From the experiment, three regimes were observed: in the first regime where the droplets were formed with nearly homogenous pattern, the heat transfer coefficient increased rapidly. In the second regime, both the droplet size and the liquid area fraction increased. In the third regime, coalescence among larger droplets was dominant, causing the decrease in the liquid area fraction with time. Moreover, the measured fall-off time was faster in the case with higher contact angle because of relatively low surface energy.

Copyright © 2015 by ASME
Topics: Condensation , Drops

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In