0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigations of the Effect of Flow Arrangement and Number of Layers on the Performance of Multi-Layer Microchannel Heat Sinks

[+] Author Affiliations
M. B. Effat, M. S. AbdelKarim, O. Hassan, M. Abdelgawad

Assiut University, Assiut, Egypt

Paper No. IMECE2015-52931, pp. V08BT10A048; 10 pages
doi:10.1115/IMECE2015-52931
From:
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 8B: Heat Transfer and Thermal Engineering
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5750-2
  • Copyright © 2015 by ASME

abstract

With the advance of miniaturization technology, more and more electronic components are placed onto small electronic chips. This leads to the generation of high amounts of thermal energy that should be removed for the safe operation of these electronic components. Microchannel heat sinks, where electronic chips are liquid cooled instead of the conventional air cooling techniques, were proposed as a means to improve cooling rates. Later on, double layer micro channel heat sinks were suggested as an upgrade to single layer microchannel heat sinks with a better thermal performance. In the present study the effects of increasing the number of layers of the microchannel heat sink to three-layers as well as the effect of changing the flow arrangements (counter and parallel flows) within the three channel layers on the thermal performance of the heat sink were investigated. In all investigated cases the temperature distribution over the base of the microchannel heat sink system and the total pressure drop are reported. A range of mass flow rates from 1×10−4 to 5×10−4 kg/s was considered. Uniform heat flux conditions were considered during the study. COMSOL Multiphysics finite element package was employed for the numerical analysis. Results indicate significant enhancement in the uniformity of the temperature on the processor surface when multi-layer channels were employed, compared to the single-layer case. The uniformity in the temperature distribution was accompanied by reduction of pressure drop across channels for the same mass flow rate and heat flux conditions. The counter flow arrangement showed the best temperature distribution with the uniform heat flux cases.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In